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Since its inception more than 20 years ago with high-
throughput parallel synthesis for oligonucleotides and
peptides,1–3 synthetic combinatorial methods have funda-
mentally advanced the ability to synthesize and screen large
numbers of compounds because of improvements made in
technology, instrumentation, and library design strategies.
This discipline was readily accepted initially and is now an
embedded component of the drug discovery process world-
wide. While there are a range of combinatorial approaches,
the use of mixture-based libraries made up of tens of
thousands to billions of compounds is the approach that
enables the most rapid and economical acquisition of
chemical and biological information. Mixture-based libraries
represent powerful tools that can be used for the identification
of active individual compounds for a wide range of important
targets, as reviewed.4 In the past decade, such approaches
have been expanded to include the synthesis of low molecular
weight acyclic and heterocyclic compounds.5–8 As with most
innovations, synthetic combinatorial methods developed for
the synthesis and screening of mixture-based libraries were
slow to gain acceptance because of the conceptual distance
between these approaches and the traditional methods
previously used in the pharmaceutical industry. This was,
and is, especially true for mixture-based libraries composed
of tens of thousands to billions of different compounds, but
such methods are now being used by an increasing number
of groups for the identification of highly active, novel
compounds in research and drug discovery programs.9,10

Mixture-based libraries are systematically arranged mix-
tures of synthetic compounds having both defined and
mixture positions of diversity. This permits information to
be gathered regarding both the activity and importance of
every functionality at each position of the library.11,12 Post
synthetic chemical modification of such existing mixture-
based libraries using the “libraries from libraries” approach
now enables the ever-increasing generation of low molecular
weight compounds.13 Thus, for the last 16 years, we have
successfully used this approach for the design and the
generation of a range of peptidomimetic and small molecule
libraries from resin-bound polyamides.7 We have also used
this approach combining solid- and solution-phase synthesis
methods for the synthesis of a nitrosamine library14 and a
platinum tetraamine coordination complex library.15

The power of synthetic mixture-based combinatorial
libraries lies in their ability to accelerate the acquisition of
information regarding specific functionalities at each variable
position in the library that determines the activity of a specific
chemical scaffold or pharmacophore. Another advantage
of mixture-based libraries resides in the very high densities
of compounds that can be synthesized in narrow areas of
chemical space. When compared to existing high-throughput
screening (HTS) programs, in which tens of thousands of
individual compounds are screened against therapeutically
important targets, millions of compounds formatted as
mixtures can be examined using substantially less material
and at much lower time/labor economics than if these same
mixture-based diversities were made and screened as indi-
vidual compounds. This unique combinatorial library ap-
proach can be applied to virtually any existing bioassay for
the identification of novel ligands. For example, a novel,
highly active tetrapeptide agonist for the κ-opioid receptor
was identified from a positional scanning library of 6.25
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million tetrapeptides.16 This highly selective, all D-amino acid
tetrapeptide (H-Phe-Phe-Nle-Arg-NH2, Ki ) 1.2 nM), which
is structurally unrelated to any endogenous κ-opioid receptor-
selective peptides or small molecule could not have been
predicted to have activity nor have been identified using
traditional drug discovery or computational methods. Minor
modifications of this tetrapeptide has led to the development
of an all D-amino acid analog (H-Phe-Phe-Nle-Arg-4-picolyl
amide) having improved affinity and selectivity to the kappa
receptor, and a 100-fold increase in peripheral selectivity
compared to asimadoline17 (manuscript in preparation). These
compounds are now in phase II human clinical trials for
neuropathic chronic pain.

Mixture-based libraries continue to find favor with re-
searchers who have assays that are not suitable to HTS
methods, not currently operable in HTS mode, or in which
target reagents are limited by availability or cost. We have
also determined that mixtures composed of very large
numbers of compounds can be tested directly using in vivo
assays yielding clear and reproducible results. The emphasis
of this Account will be on recent advances in the use of
mixture-based combinatorial libraries. These include scaffold-
ranking strategies (which enable the rapid identification of
active library scaffolds), the examination of computational
analysis for the enhanced deconvolution of heterocyclic
positional scanning libraries, and the direct in vivo screening
of mixture-based libraries. We begin with a review of recent
studies using mixture-based (primarily positional scanning)
libraries.

Mixture-based libraries composed of peptides, peptido-
mimetics, and small molecules have been used in a wide

range of in vitro bioassays for the identification of potential
useful hits, lead compounds, or both. This was surveyed in
earlier reviews.4,9 Table 1 summarizes a number of studies
published since 2002 using mixture-based libraries against
receptors, enzymes, and other targets for the successful
identification of novel compounds. Boger and co-workers
recently published two studies using mixture-based libraries
synthesized by solution-phase methods for the identification
of erythropoietin mimetics and novel ligands that modulate
protein–protein and protein-DNA interactions.18,19 A num-
ber of studies by Perez-Paya and co-workers have used
positional scanning libraries of peptoids for the identification
of novel chemosensitizers and antibacterial compounds.20–26

Several different groups have developed and used fluores-
cently labeled positional scanning libraries to probe enzyme
specificity for a number of key proteases.27–34 Recent work
by Houghten and co-workers has involved the synthesis of
a tetrapeptide positional scanning library, in which each
peptide of the library was fluorescently labeled with
rhodamine. The library was screened in a κ-receptor binding
assay and directly yielded high affinity κ-specific ligands with
intrinsic fluorescent properties.35 Small molecule antagonists
of XIAP-caspase inhibition (apoptosis suppression) that
exhibited broad antitumor activity have also been identified
from a positional scanning library composed of more than
85 000 polyphenyl ureas.36 The mechanism of action37 and
efficacy of these compounds have been confirmed in an

Table 1. Selected Examples from Recent Studies Using Mixture-Based Libraries

receptors/other targets

compound class target ref

polyphenyl urea X-linked inhibitor apoptosis protein (XIAP) 36
pyrrolidine bis-cyclic guandine methicillin-resistant S. aureus 42
isatin-B-thiosemicarbazones vaccinia virus-infected cells 63
polyamines µ-opioid receptor 64
N-alkyl glycine (peptoid) MDR P-gp 20, 21
N-alkyl glycine (peptoid) lipopolysaccharide 22
N-alkyl glycine (peptoid) S. areus MR10, P. aeruginosa 23
N-alkyl glycine (peptoid) NMDA receptor vanilloid receptor subunit 1 24–26
dimeric iminodiacetic acid diamides EPO receptor 19
rhodamine tetrapeptide κ-opioid receptor 35
hexapeptide DNA recombination 65
nonapeptide C. albicans 66
nonapeptide MHC, CD4 T cells, CD8 T cells 67–70
decapeptide HIV CD4 T cells, Her-2/neu CD8 T, autoimmune CD4 T cells 71–74

enzymes

compound class target ref

indinavir HIV protease 75
peptidomimetic AICAR Tfase 18
tetrapeptide cysteine proteases and proteases of parasitic origin 76
tetrapeptide human prostatin, serine, cysteine, and threonine protease, thrombin, caspase 3 27, 28
tetrapeptide human hepsin trypsin-like serine protease 29
tetrapeptide granzyme M 30
tetrapeptide protease KLK4 human kallikrein 31
tetra- and octapeptide NSZB/NS3 Dengue virus 32
hexapeptide angiotensin I converting enzyme, human cathepsin B 33, 34
hexapeptide fibrinogen, vitronectin 77
hexapeptide prohormone convertase 5/7, human furin 78, 79
hexapeptide topoisomerase 80
undecapeptide protein kinase C 81
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increasing number of solid tumor 38,39 and hematologic 40,41

malignancies.

Scaffold Ranking Strategy for the Rapid Identification
of Active Libraries

Mixture-based libraries, when arranged in a positional
scanning format,12 have been shown to provide extensive
structure–activity information at each variable position in a
given central scaffold in a wide range of assays. Such results
are inherent with this approach because positional scanning
libraries are composed of systematically arranged, very dense
mixtures of compounds having both defined and mixture
positions for a given scaffold. Thus, information is rapidly
obtained regarding the activity of the functionalities for each
varied position for a given scaffold. A simple conceptual
description of a positional scanning synthetic combinatorial
library (PS-SCL) is helpful. Thus, using a simple tripeptide
PS-SCL composed, in total, of 27 tripeptides (3 amino acids
at each position, 33 ) 27), this tripeptide PS-SCL is
composed of three sublibraries (OXX, XOX, and XXO) and
a total of nine separate mixtures. The defined positions (O)
contain one of the three amino acids, and the mixture
positions (X) contain a mixture of all three amino acids. It
is important to note that each of the three sublibraries varies
only in the location of the defined amino acid, but each one
contains the same 27 peptides with only their defined
positions varied. In this example, if the tripeptide RAT was
the only active peptide, then this individual peptide (RAT)
would be responsible for all the activity found for the active
sublibrary mixtures RXX, XAX, and XXT. Thus, the active
compound, in this case RAT, is identified by synthesis of
the combination of the defined amino acids identified as the
most active mixtures at each position. The positional
scanning concept can be used to prepare libraries of any
length of peptide or compound class. Thus, while the
illustration above involving 3 amino acids at each of three
position (resulting in 27 tripeptides) would require only 9
mixtures to be screened, a hexapeptide PS-SCL using 20
amino acids at each position (resulting in a library composed
of 64 million hexapeptides) would require only 120 mixtures
to be screened, and a decapeptide library using 20 amino
acids at each position (resulting in over 10 trillion decapep-
tides) would require only 200 mixtures to be screened.

Over the past 16 years, we have synthesized numerous
positional scanning libraries, covering a collection of ap-
proximately 7 500 000 small molecules and well over 10
trillion peptides.7,9 Extensive optimization of reaction condi-
tions are a necessary component of mixture library genera-
tion. This occurs before a library is synthesized to ensure a
broad range of functional group incorporation and ensures
that these functionalities withstand the synthesis conditions
used. This step is used to determine the breadth of the
reaction conditions for the functionalities tested by synthesiz-
ing individual controls using as wide a range of building
blocks as is practical. These controls are prepared systemati-
cally, using a method in which one position was varied with
each of the available building blocks, while the other reactive
positions of a center scaffold molecule are fixed with a single
building block. Each compound is assessed by LC-MS for

the identity and purity, and those compounds that give yields
and purities greater than 80% are included in the synthesis
of the library. The reproducibility of the synthetic chemistry
is the key to the successful generation and use of mixture
based libraries.4 The advantage of positional scanning
synthetic libraries, each containing thousands to millions to
even billions of compounds is that, when assembled as
mixtures, each library can be screened using a much smaller
set of samples, in most cases 100–200, relative to the total
number of compounds making up the library. This has
enabled us and others to use mixture-based libraries in a wide
variety of assays, ranging from simple receptor-binding
assays and cell-based assays to relatively low-throughput gel
electrophoresis and now, as described below, directly in vivo
animal models. This allows biologists to concentrate on
designing assays that will provide the most relevant data
rather than being forced to format virtually all assays into a
classic high-throughput screening format. In addition, target-
based assays, by their very nature, preclude that which is
not known both in terms of multiple receptor interactions
and or phenotypic activity.

Thus, of the more than 50 low molecular weight positional
scanning libraries that have been prepared, which represent
approximately 7 500 000 acyclic and heterocyclic com-
pounds, the use of the mixture-based positional scanning
format only requires one to screen ∼6000 mixtures. A
number of these small molecule libraries have been prepared
using the “libraries from libraries approach”,7,13 in which
different libraries are prepared using the same building blocks
synthesized around differing chemical scaffolds. This is now
often termed “diversity-oriented synthesis”. The question
inevitably arises as to which libraries are more likely to lead
to the identification of active compounds or which libraries
should be screened first. This is especially pertinent when
there is no known molecule for a target of interest. One
option is to screen all of the mixtures making up the
positional scanning libraries (for example 6000 samples) and,
on the basis of these screening results, decide which libraries
will be deconvoluted to identify the active individual
compounds. While 6000 samples even as mixtures is a small
number compared to the hundreds of thousands to millions
of compounds in typical high-throughput screening platforms,
it can still be severely limiting, especially in the many assays
available in academic, nonprofit research organizations or
smaller biotechnology firms.

In an effort to further increase efficiency and utility as
our collection of libraries expands, we have developed a new
strategy termed “scaffold ranking” for the rapid identification
and ranking of active library scaffolds. To illustrate this
concept, 19 different mixture-based libraries, representing a
total of approximately 4 million low molecular weight acyclic
and heterocyclic compounds, can be rank ordered in terms
of the activity of their scaffold following the screening of
only 19 mixtures. Each of these scaffold mixtures are made
up of differing small molecule libraries, in which each
mixture is simply the entire library from each of the separate
sublibraries of these respective 19 differing positional
scanning libraries. Unlike positional scanning libraries that
contain at least one defined position and several mixture
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positions, the scaffold mixtures have no defined positions.
The results obtained following the testing of the scaffold
mixtures allows one to rank order the libraries based solely
on the overall activity of the various scaffolds. The most
active scaffolds can then be screened as complete positional
scanning libraries from the most active to the least active as
time and resources permit for rapid lead identification of
individual compounds.

To illustrate and validate the scaffold ranking strategy, we
compared the activities obtained upon testing the individual
mixtures of a complete positional scanning library relative
to the activities of this same library as a single mixture having
no defined positions. Figure 1 shows a positional scanning
library (library 1346) with a pyrrolidine bis-cyclic guanidine
scaffold with four variable positions of diversity and
composed of four sublibraries each having one defined
position and three mixture positions (OXXX, XOXX,

XXOX, XXXO). In this example, sublibrary 1 of 1346 (R1
defined, represented as O) is made up of 26 separate mixtures
each containing 28 392 compounds. Sublibraries 2 (R2
defined) and 3 (R3 defined) are similar to sublibrary 1 in
that they are made up of 26 mixtures each containing 28 392
compounds. Sublibrary 4 (R4 defined) contains 42 mixtures
each containing 17 576 compounds. Table 2 shows the
building blocks used to synthesize this library and the
resulting functionalities at each of the four positions using
the synthetic methodology previously described.42 It should
be noted that each of the four sublibraries in total varies
solely in the location of the defined functionality but contains
exactly the same number and type of compounds (each
having a total of 738 192 compounds).

Each of the 120 mixtures making up this positional
scanning library were tested for their ability to inhibit radio-
labeled [3H-D-Ala2,MePhe4,Gly ol] enkephalin (DAMGO)

Figure 1. Screening profile of 1346 pyrrolidine bis-cyclic guanidine positional scanning library in a µ-opioid radioreceptor binding assay.
This library has four positions of diversity (R1, R2, R3, R4) and is represented by four positional sublibraries, each differing in the location
of the defined position with the other three positions as mixtures. See Table 2 for more details. Each bar represents the percent inhibition
of a mixture displacing radiolabeled DAMGO binding to the µ-opioid receptor. The mixtures making up the library were screened in
duplicate at 0.1 mg/mL.
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Table 2. Building Blocks Used to Synthesize 1346 Pyrrolidine Bis-cyclic Guanidine PS-SCL and Resulting Functionalities at the Four
Positions of Diversitya

number building block functionality

1 27 53 Boc-L-Ala S-methyl
2 28 54 Boc-L-Phe S-benzyl
3 29 55 Boc-Gly hydrogen
4 30 56 Boc-L-Ile S-2-butyl
5 31 57 Boc-L-Leu S-isobutyl
6 32 58 Boc-L-Ser(Bzl) R-hydroxymethyl
7 33 59 Boc-L-Thr(Bzl) (R,R)-1-hydroxyethyl
8 34 60 Boc-L-Val S-isopropyl
9 35 61 Boc-L-Tyr(BrZ) S-4-hydroxybenzyl
10 36 62 Boc-D-Ala R-methyl
11 37 63 Boc-D-Phe R-benzyl
12 38 64 Boc-D-Ile R-2-butyl
13 39 65 Boc-D-Leu R-isobutyl
14 40 66 Boc-D-Ser(Bzl) S-hydroxymethyl
15 41 67 Boc-D-Thr(Bzl) (S,S)-1-hydroxyethyl
16 42 68 Boc-D-Val R-isopropyl
17 43 69 Boc-D-Tyr(BrZ) R-4-hydroxybenzyl
18 44 70 Boc-L-phenylglycine S-phenyl
19 45 71 Boc-L-norvaline S-propyl
20 46 72 Boc-D-norvaline R-propyl
21 47 73 Boc-L-norleucine S-butyl
22 48 74 Boc-D-norleucine R-butyl
23 49 75 Boc-L-naphthylalanine S-2-naphthylmethyl
24 50 76 Boc-D-naphthylalanine R-2-naphthylmethyl
25 51 77 Boc-L-cyclohexylalanine S-cyclohexyl
26 52 78 Boc-D-cyclohexylalanine R-cyclohexyl

79 1-phenyl-1-cyclopropanecarboxylic acid (1-phenyl-cyclopropyl)-methyl
80 2-phenylbutyric acid 2-phenylbutyl
81 3-phenylbutyric acid 3-phenylbutyl
82 m-tolylacetic acid m-tolylethyl
83 3-fluorophenylacetic acid 2-(3-fluoro-phenyl)-ethyl
84 3-bromophenylacetic acid 2-(3-bromo-phenyl)-ethyl
85 (R-R-R-trifluoro-m-tolyl) acetic acid 2-(3-trifluoromethyl-phenyl)-ethyl
86 p-tolylacetic acid p-tolylethyl
87 4-fluorophenylacetic acid 2-(4-fluoro-phenyl)-ethyl
88 3-methoxyphenylacetic acid 2-(3-methoxy-phenyl)-ethyl
89 4-bromophenylacetic Acid 2-(4-bromo-phenyl)-ethyl
90 4-methoxyphenylacetic acid 2-(4-methoxy-phenyl)-ethyl
91 4-ethoxyphenylacetic acid 2-(4-ethoxy-phenyl)-ethyl
92 4-isobutyl-R-methylphenylacetic acid 2-(4-isobutyl-phenyl)-propyl
93 3,4-dichlorophenylacetic acid 3,4-dichlorophenethyl
94 3,5-bis(trifluoromethyl)-phenylacetic acid 2-(3,5-bis-trifluoromethyl-phenyl)-ethyl
95 3-(3,4-dimethoxyphenyl)-propionic acid 3-(3,4-dimethoxy-phenyl)-propyl
96 phenylacetic acid phenethyl
97 3,4,5-trimethoxybenzoic acid 3,4,5-trimethoxy-benzyl
98 butyric acid butyl
99 heptanoic acid heptyl
100 isobutyric acid isobutyl
101 2-methylbutyric acid 2-methylbutyl
102 isovaleric acid 3-methylbutyl
103 3-methylvaleric acid 3-methylpentyl
104 4-methylvaleric acid 4-methylpentyl
105 p-toluic acid 4-methyl-benzyl
106 cyclopentanecarboxylic acid cyclopently methyl
107 cyclohexanecarboxylic acid cyclohexyl-methyl
108 cyclohexylacetic acid cyclohexyl-ethyl
109 cyclohexanebutyric acid cyclohexyl-butyl
110 cycloheptanecarboxylic acid cycloheptyl-methyl
111 2-methylcyclopropanecarboxylic acid (2-methyl-cyclopropyl)-methyl
112 cyclobutanecarboxylic acid cyclobutyl-methyl
113 3-cyclopentylpropionic acid 3-cyclopentyl-propyl
114 cyclohexanepropionic acid cyclohexyl-propyl
115 4-methyl-1-cyclohexanecarboxylic acid 4-methyl-1-cyclohexyl-methyl
116 4-tert-butyl-cyclohexanecarboxylic acid 4-tert-butyl-cyclohexyl-methyl
117 4-biphenylacetic acid 2-biphenyl-4-yl-ethyl
118 1-adamantanecarboxylic acid adamantan-1-yl-methyl
119 1-adamantaneacetic acid 2-adamantan-1-yl-ethyl
120 2-norbornaneacetic acid 2-bicyclo[2.2.1]hept-2-yl-ethyl

a Sublibrary 1: R1 defined for samples 1–26 (28 392 compounds each). Sublibrary 2: R2 defined for samples 27–52 (28 392 compounds each).
Sublibrary 3: R3 defined for samples 53–78 (28 392 compounds each). Sublibrary 4: R4 defined for samples 79–120 (17 576 compounds each).
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in a µ-opioid receptor-binding assay (Figure 1) as previously
described.16 The profile clearly shows the range of inhibition
found for the set of mixtures (17 576–28 392 compounds/
mixture) at each of the four diversity positions. When the
resulting data is averaged for each position, one obtains a
single “library” average activity for each diversity position
(R1-R4) making up the library (738 192 compounds), which
is shown as black bars in Figure 2. In addition, four mixtures
with no defined positions were prepared by physical com-
bination of the individual mixtures making up each of the
four positions, namely, the 26 mixtures at positions 1, 2,
and 3 and the 42 mixtures at position 4. These four “scaffold”
mixtures, which theoretically are identical in number and
type of compounds, were also tested in the µ-opioid receptor
binding assay (shown as gray bars in Figure 2). The results
obtained were in good agreement with the activity obtained
by calculating the library average activity when screened as
a positional scanning library. These results clearly indicate
that activity can be obtained with more than a 10-fold
increase in mixture complexity, and that a library of 738 192
compounds can yield activity that coincides well with that
expected when compared to the average of the single position
defined mixtures of this positional scanning library.

The scaffold ranking strategy is demonstrated here using
some of our collection of libraries from libraries.7,13 In this
example, the scaffold mixtures were prepared using 19
different small molecule positional scanning libraries rep-
resenting four different diversity families and more than 4
million low molecular weight compounds in total (Figure
3). Each diversity family included libraries containing the
same number of diversity positions, identical side chain
functionalities at each diversity position, and the same
number of compounds within the library. Libraries within
each diversity family differed only in the chemical nature
of the central scaffold. As described conceptually above, each
scaffold mixture is prepared by simply combining the
mixtures from one of the defined positions from the positional
scanning library to create a single “all X” mixture. The 19
scaffold mixtures were screened in the µ-opioid receptor
binding assay, and these results are compared with the overall
average percent inhibition of each library in the same assay

(Figure 4). It is clear that the data for each library are in
good agreement obtained by either the library or scaffold
method. The scaffolds within each diversity family are ranked
from most active to least active. In three of the four different
diversity families, one can clearly find scaffolds that are more
active than others within the same family. Thus, scaffold
ranking enables one to rank order the scaffolds examined
and then in turn enable prioritization based on the differing
activities seen between the scaffolds. The most-active
scaffolds from each diversity family for this assay, namely,
1169, 1421, and 1346, would logically thus be the first to
be screened as complete positional scanning libraries. Clearly,
the remaining libraries could be screened at a later date as
time and resources allow. This approach would not preclude
one of the lesser active mixtures from having active
compounds; it simply allows one to rank the activities of
the scaffolds (“triage”) to facilitate future screening and
effectively use available time and resources.

Table 3 illustrates the reduction of testing effort for the
diversity found in the mixture-based scaffold ranking strat-
egy. In this example, the µ-opioid receptor activity informa-
tion was obtained from testing 19 different scaffold mixtures
containing over 4 million small molecules, leading one to
pursue several active libraries in complete positional scanning
format, compared to testing over 2000 mixtures. The time
and cost savings in screening efforts of mixtures versus
individual compounds is clearly enormous, and the fact that
the activities can be determined from mixtures of hundreds
of thousands of compounds demonstrate the validity of
testing mixtures. A demonstration of using this approach for
low-throughput assays is presented later in this Account.

To complete the process for the identification of individual
compounds from a positional scanning library, the pyrrolidine
bis-cyclic guanidine library 1346 was chosen from the
scaffold ranking strategy described above. The deconvolution
of positional scanning libraries consists of the preparation
of individual compounds derived from the combinations of
the defined functionalities of the most active mixtures at each
position of the library. In this example, upon screening the
1346 library at a fixed concentration in the µ-opioid receptor
assay (Figure 1), 41 mixtures were found to inhibit >90%
of the bound radioligand and were tested again in a
dose–response manner to select the most-active mixtures
based on IC50 values. For the 41 mixtures tested, IC50 values
ranged from 200 to 3000 nM using an average molecular
weight (MW) of 645.

For the deconvolution of the pyrrolidine bis-cyclic guani-
dine library, selection of the most-active functionalities was
based on activity and differences in chemical character while
also minimizing the number of individual compounds to be
synthesized. In the R1 position, three of the four function-
alities with IC50 values of less than 500 nM were chosen,
namely, S-methyl (mixture 1), S-4-hydroxybenzyl (9), and
R-methyl (10). Hydrogen (3) was not chosen because of its
similarity with the two methyl functionalities. In the R2
position, the three functionalities with IC50 values of less
than 500 nM were selected, namely, R-2-naphthylalanine
(50), R-propyl (46), and R-4-hydroxybenzyl (43) In the R3
position, the three most active of the eight functionalities

Figure 2. Comparison of library and scaffold activities for the
pyrroldine bis-cyclic guanidine library in µ-opioid receptor. Library
(black bars) activity is average percent inhibition for each diversity
position (R1, R2, R3, and R4) from Figure 1. Scaffold (gray bars)
activity is percent inhibition of each diversity position mixture that
was prepared by physically combining the mixtures making up each
diversity position and then testing them in the µ-opioid radioreceptor
binding assay.
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with IC50 values of less than 500 nM were selected, namely,
R-methyl (62), S-methyl (53), and S-hydroxymethyl (66). The
remaining five functionalities at this position were chemically
similar to the three selected, for example, R-butyl (74) and
R-propyl (72), and were not considered for deconvolution.
In the final R4 positions, two functionalities, namely,
4-methyl-1-cyclohexyl-methyl (115) and cyclohexyl-ethyl
(108), were selected from five chemically similar function-
alities with IC50 values of less than 500 nM. The combination
of the selected functionalities led to 72 (3 × 3 × 4 × 2 )
72) individual pyrrolidine bis-cyclic guanidines that were
synthesized and tested. The activities of the 72 individual
pyrrolidine bis-cyclic guanidines range from active com-
pounds (<100 nM) to less-active compounds (>15 µM).

The nature of positional scanning library deconvolution
leads to a group of individual compounds that are inherently
analogs of each other, arranged in groups having common
functionalities at any of the four diversity positions. This

inherent feature of positional scanning library deconvolution
also provides preliminary structure–activity relationship
(SAR) information. Here, the two most-active compounds
differ only in the stereochemistry in the methyl group at the
R1 position (1561-2 and 1561-50, Ki ) 80–90 nM, Table
4). In addition, the single -substitution analogs of 1561-2
and another compound (1561-38), which were present in the
set of 72 compounds identified from the library, are shown
in Table 4. For compound 1561-2 one can conclude that the
S-methyl group at R1 can be replaced with its stereoisomer
equivalent while retaining activity, but its activity is lost upon
substitution by S-4-hydroxybenzyl. Little difference in activ-
ity can be found upon substitution of the R4 position (2-(3-
bromo-phenyl) ethyl to 4-methyl-1-cyclohexyl-methyl); how-
ever, the same substitution at the R4 position of 1561-38
(Ki ) 132nM) results in a complete loss of activity. These
are just a few illustrative examples of SAR information one

Figure 3. Positional scanning libraries used for scaffold ranking. Libraries are grouped into four different diversity families. The number
of compounds in each library for a given family is the same, and the total number of compounds for each family is shown. Top left panel:
Each library is made up of 45 864 compounds (R1 ) 42 mixtures, R2 ) 26 mixtures, and R3 ) 42 mixtures). The libraries are 1169
bis-cyclic guanidine, 1170 bis-cyclic diketopiperazine, 1171 bis-cyclic thiourea, 1172 bis-cyclic piperazine, and 1174 N-acylated bis-
piperazine. Top right panel: Each library is made up of 31 320 compounds (R1 ) 29 mixtures, R2 ) 27 mixtures, and R3)40 mixtures).
The libraries are 1418 N-methyl-1,4,5-trisubstituted-2,3-diketopiperazine, 1419 N-benzyl-1,4,5-trisubstituted-2,3-diketopiperazine, 1420
N-benzyl-1,4,5-trisubstituted piperazine, 1421 N-methyl-1,4,5-trisubstituted piperazine, and 1422 N-methyl triamine. Bottom left panel:
Each library is made up of 56 610 compounds (R1 ) 43 mixtures, R2 ) 37 mixtures, R3 ) 45 mixtures). The libraries are 1275
dihydroimidazolyl-butyl-diketopiperazine, 1276 dihydroimidazolyl-butyl-cyclic thiourea, 1319 dihydroimidazolyl-butyl-cyclic urea, and 1324
dihydroimidazolyl-methyl-diketopiperazine. Bottom right panel: Each library is made up of 738 192 compounds (R1, R2, and R3 ) 26
mixtures and R4 ) 42 mixtures). The libraries are 1343 pyrrolidine pentamine, 1344 pyrrolidine bis-diketopiperazine, 1345 pyrrolidine
bis-piperazine, 1346 pyrrolidine bis-cyclic guanidine, 1347 pyrrolidine bis-cyclic thiourea.
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can readily obtain from the deconvolution of positional
scanning libraries.

In Vivo Testing of Mixtures for Drug Discovery

In vivo testing of mixture-based chemically diverse
libraries is now being explored in this laboratory as a more
direct and value-added approach to drug discovery. Philo-
sophically, this approach to drug discovery is analogous to
the Chinese leader Deng Xiaoping’s quote regarding a
country’s economic success: “It doesn’t matter whether a
cat is black or white, so long as it catches mice”.43 While
the direct use of mixtures may seem counterintuitive to some,
if this approach can identify therapeutic candidates, then its
value in drug discovery is clear. If successful, as anticipated
by our preliminary studies, this will result in significant
savings of both time and resources compared to the
traditional target-based drug discovery process. We expect
that the in vivo discovery of active compounds will inherently
yield more advanced therapeutic candidates. This is espe-
cially true when one notes that a large number of highly
active compounds identified while using in vitro assays fail
upon initial in vivo testing. The approach can be likened to

the original identification of active compounds, the seren-
dipitous discovery of active natural products by the ingestion
of plants by humans. Natural products are also typically made
up of hundreds to thousands of compounds with both varying
structures and concentrations.

Previous studies of pharmokinetic in vivo screening of
mixtures has proven to be beneficial for lead identification
and optimization.44,45 Preliminary experiments have been
conducted that serve as proof of concept studies to validate
the use of mixture-based libraries in direct in vivo models
of pain modulation. The mouse tail flick assay was used to
assess the in vivo antinociceptive effects of mixtures known
to contain active compounds. This assay was used because
it is well established, yields clear and reproducible end points,
is highly representative of µ-opioid receptor activity and
translates well to human studies. A positively biased mixture
of 125 000 tetrapeptides (50 different amino acids, X, at three
positions, 503) was synthesized in which 2,6-dimethyltyrosine
(Dmt) was fixed at the N-terminal position (Dmt-XXX). This
mixture contains the known active dermorphin-derived
tetrapeptide analog H-Dmt-D-Arg-Phe-Lys-NH2.46 This tet-
rapeptide has high µ-opioid receptor affinity47 with proven

Figure 4. Comparison of library and scaffold µ-opioid activities for the 19 small molecule mixture-based libraries. Libraries are grouped
into four diversity families, in which each library of a given family shares the same number of diversity positions, identical building block
side chain functionalities, and the same number of compounds within each library. Library (black bars) activity is overall average percent
inhibition for each library. Scaffold (gray bars) activity is overall average percent inhibition of each library that was prepared by physically
combining mixtures making up each diversity position and then tested in the µ-opioid radioreceptor binding assay. Each bar represents the
percent inhibition of a mixture displacing radiolabeled DAMGO binding to the µ-opioid receptor. Library was screened in duplicate at 0.1
mg/mL.

Table 3. Mixture-Based Libraries in Various Formats Reduce the Number of Samples

format samples to test no. of 96-well plates reduction

total diversity 4 303 320 48 900
PS-SCL 2094 24 2000-fold
R1 samples 621 8 7000-fold
scaffold ranking 19 1 70 000-fold
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in vivo antinociceptive properties in mice.48 The Dmt group
has been shown to be an essential component of this
compound, as demonstrated by both in vitro and in vivo
analysis. Here the Dmt-XXX tetrapeptide mixture was
examined for its activity in vivo and compared to the
antinociceptive effect of the dermorphin-derived tetrapeptide
analog and two mixtures lacking the peptide, namely, F-XXX
and k-XXX. Dmt-XXX, at a dose of 100 mg/kg, exhibited
activity and had duration of action comparable to dermor-
phin-derived tetrapeptide analog at 10 mg/kg (Figure 5). The
effect was shown to be specific for Dmt-XXX because
F-XXX and k-XXX were inactive at comparable doses (and
800 and 3580 times less active in vitro, respectively, see

Table 5). It was notable that the mixture Dmt-XXX exhibited
antinociceptive effects substantially longer than morphine,
a property already reported for dermorphin-derived tetrapep-
tide analog.48 As anticipated, the mixture required greater
absolute doses than dermorphin-derived tetrapeptide analog.

Following these results, we carried out a single test case
iteration that would be used to identify the next position of
the active mixture. This was done by synthesizing a mixture
likely to be the most active, namely, Dmt-r-XX, with
D-arginine defined in the second position, as found in
dermorphin-derived tetrapeptide analog. This iteration de-
creased the complexity of the mixtures from 125 000
compounds to 2500 compounds. The antinociceptive effect
of this mixture was tested in the tail-flick assay as before.
One would expect an increase in activity when tested at the
same concentration because the tetrapeptide mixture is 50
times less complex with regards to the number of com-
pounds. Indeed, increased activity was observed for this
mixture. While the mixture size from Dmt-XXX to Dmt-r-
XX decreased by 50-fold, the increase in activity was modest
(4-fold in vitro). This can be explained by the possibility
that arginine may not be the most active substitution at the
second position of this mixture; D-arginine was defined at
the second position simply as a test study to expand this
proof of concept for the use of mixture-based combinatorial
libraries directly in vivo. Once again, 5 h post injection at a
dose of 25 mg/kg, this peptide mixture of 2500 tetrapeptides
was clearly more active than morphine at this time point
(Figure 5).

The use of mixture-based libraries for direct in vivo testing
for the identification of inherently more advanced “hits”,
while clearly both exciting and promising, remains in the
proof-of-concept phase at this time. If this approach is found

Table 4. µ-Opioid Receptor Binding Activities for Single-Substitution Analogs of Two Active Compounds (1561-2 and 1561-38)
Identified from the Pyrrolidine Bis-cyclic Guanidine Library

1561- R1 R2 R3 R4 Ki (nM) SEM

2 S-methyl R-2-napthylmethyl R-methyl 2-(3-bromo-phenyl)-ethyl 79.3 20.2
26 S-4-hdroxybenzyl R-2-napthylmethyl R-methyl 2-(3-bromo-phenyl)-ethyl >1000
50 R-methyl R-2-napthylmethyl R-methyl 2-(3-bromo-phenyl)-ethyl 89.9 5.2
10 S-methyl R-butyl R-methyl 2-(3-bromo-phenyl)-ethyl 677.9 69.4
18 S-methyl R-4-hydroxybenzyl R-methyl 2-(3-bromo-phenyl)-ethyl 120.0 15.2
4 S-methyl R-2-napthylmethyl S-methyl 2-(3-bromo-phenyl)-ethyl 233.1 32.7
6 S-methyl R-2-napthylmethyl R-hydroxymethyl 2-(3-bromo-phenyl)-ethyl 138.8 39.3
8 S-methyl R-2-napthylmethyl R-4-hydroxybenzyl 2-(3-bromo-phenyl)-ethyl ND
1 S-methyl R-2-napthylmethyl R-methyl 4-methyl-1-cyclohexyl-methyl 144.3 32.3

1561- R1 R2 R3 R4 Ki (nM) SEM

38 S-4-hdroxybenzyl R-butyl R-hydroxymethyl 2-(3-bromo-phenyl)-ethyl 132.2 27.6
14 S-methyl R-butyl R-hydroxymethyl 2-(3-bromo-phenyl)-ethyl 465.1 66.1
62 R-methyl R-butyl R-hydroxymethyl 2-(3-bromo-phenyl)-ethyl 362.6 97.8
30 S-4-hdroxybenzyl R-2-napthylmethyl R-hydroxymethyl 2-(3-bromo-phenyl)-ethyl >1000
46 S-4-hdroxybenzyl R-4-hydroxybenzyl R-hydroxymethyl 2-(3-bromo-phenyl)-ethyl 204.1 13.4
34 S-4-hdroxybenzyl R-butyl R-methyl 2-(3-bromo-phenyl)-ethyl 381.7 46.6
36 S-4-hdroxybenzyl R-butyl S-methyl 2-(3-bromo-phenyl)-ethyl ND
40 S-4-hdroxybenzyl R-butyl R-4-hydroxybenzyl 2-(3-bromo-phenyl)-ethyl 415.0 25.1
37 S-4-hdroxybenzyl R-butyl R-hydroxymethyl 4-methyl-1-cyclohexyl-methyl >1000

Figure 5. Comparison of in vivo activity of tetrapeptide mixtures
and individual compounds using tail flick assay. Tail flick latency
is the average of 2 readings per animal, 10 animals per compound
or mixture. Vehicle is 10% trappsol. Gray bars ) 30 min post
injection; black bars ) 5 h. post injection.
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to be as generally applicable as we expect, in vivo testing
of mixtures will significantly accelerate the drug discovery
process over traditional target-based in vitro assays. We are
continually exploring the enormous potential inherent in the
direct in vivo testing of chemically diverse libraries in an
effort to reduce the time and resources required in the
traditional drug discovery process. It is anticipated that this
new approach has the potential to identify novel pain-
modulating agents and the identification of ligands for orphan
receptors that play a role in pain regulation.

By its very nature, in vivo assay screening is inherently
low throughput, and to test a large diversity in vivo, the
number of samples required can be further reduced using
the scaffold ranking strategy, as previously described. Here,
we present preliminary results using the scaffold ranking
approach combined with a in vivo screening assay for
psychiatric indications developed by PsychoGenics, Inc.49

While this assay is a high-throughput assay relative to other
in vivo assays, its focus is on the direct use of the behavior
of animals as the assay. It uses specialized hardware,
computer vision, and machine learning algorithms to produce
predictions of therapeutic efficacy for several psychiatric
indications. This study demonstrates the potential value of
the scaffold ranking strategy as a method for triaging the
screening of any collection of compounds having identical
functionalities and differing central scaffolds.

To triage positional scanning libraries for the identification
of psychiatrically relevant compounds, we prepared five
different scaffold mixtures representing five different posi-
tional scanning libraries and screened them using Psycho-
Genics in vivo assay (Figure 6). This assay simultaneously
screened and collected data for seven different CNS indica-
tions, and the predictions were expressed in the form of
Bayesian posterior probabilities for each class. Scaffold
ranking allows one to determine which scaffolds show the
most pharmacological activity. In Figure 6, scaffolds 1, 3,
and 5 were clearly active, scaffold 4 showed marginal
activity, and scaffold 2 was completely inactive. Scaffolds
1, 3, and 5 were retested at a lower dose and scaffold 1
showed the highest activity of the three. The complete
positional scanning library of scaffold 1 was subsequently
screened, and the data for the mixtures with one position
defined is shown in Figure 7a. The data revealed that only
a few mixtures were active. Thus, specific functionalities at
this position must be contributing to the activity of this
scaffold, with the majority (20 of 27) of the mixtures having
no activity. It is important to note that mixtures 3 and 4, as
well as 9 and 10, differ solely on the stereochemistry in the
moiety at the defined position. The activities found for
mixtures 3 and 4 differ in their CNS activity profile, while
mixture 10 is clearly active and mixture 9 is not. The

activities of 6 compounds from the initial positional scanning
deconvolution are shown in Figure 7b. Five of the six
compounds were active and showed a range of different CNS
activities. Furthermore, the type of CNS activity (CNS 1, 3,
and 4) found for the individual compounds correspond to
those found in the mixtures. While this approach has clear
value when used in relatively low-throughput assays, it
should be noted that this approach is equally valuable for
triaging libraries even when using mid- to high-throughput
assays. Scaffold ranking is an approach that will direct the
researcher toward pursuing the most-active libraries in a large
collection of chemical diversity. It is possible that with this
approach, as well as any approach using complex mixtures,
that it may be difficult to distinguish mixtures having a few
very high-affinity compounds from other mixtures containing
many low-affinity compounds. Differentiation between these
two types of mixtures becomes apparent upon the screening
of the complete positional scanning library and deconvolution
to individual compounds.

Computational Deconvolution of Positional Scanning
Libraries

The technology of synthetic combinatorial chemistry and
high-throughput screening has enabled access to the synthesis

Table 5. µ-Opioid Receptor Binding (Ki) and cAMP (IC50) Data for Individual and Tetrapeptide Mixtures

binding Ki (nM) cAMP IC50 (µM) compounds

L-(Dmt)-Tyr X X X 16.2 6.8 125 000
L-Phe X X X 13 000 1027 125 000
D-Lys X X X 58 030 ND 125 000
L-(Dmt)-Tyr D-Arg X X 4.5 0.4 2500
Dmt-DALDA: L-(Dmt)-Tyr D-Arg L-Phe L-Lys 0.2 0.002 1
DALDA: L-Tyr D-Arg L-Phe L-Lys 5.5 0.8 1

Figure 6. Screening results of 5 different scaffolds in Psychogenics
in vivo screening assay for psychiatric indications. The five libraries
(scaffolds 1-5) are from the same diversity family of libraries and
therefore only differ at the core scaffold. All of them were screened
at a dose of 30 mg/kg in mice, n ) 10. The assay simultaneously
screens for seven different CNS indications. “pVEH” indicates the
vehicle, or control group, and thus indicates compounds with no
observed behavioral effects. The y-axis represents predictions that
are expressed in the form of Bayesian posterior probabilities from
a single classifier trained on all eight classes. On the basis of the
pVEH values, scaffold activity could be ranked 1, 3, 5 > 2, 4,
leading one to test the complete libraries of scaffolds 1, 3, and 5
for further evaluation. However, a full measure of potency requires
testing the scaffolds across a range of doses.
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and testing of thousands to millions of compounds in an
extremely short period of time relative to testing this number
of compounds individually. Practical considerations limiting
the number of compounds to be synthesized and purified
require that identification of a smaller number of structures
having distinctly different chemical functionalities would
clearly be beneficial. The visual inspection of each structure
to determine unique functionality, however, can be limiting
as well as being only qualitative in nature. Our laboratory
has successfully employed the use of mixture-based libraries
to circumvent a number of these limitations. Computational
chemistry can now be used to apply more quantitative
measurements to distinguish compounds in collections of
compounds, including mixture-based libraries.

Each of the small molecule positional scanning libraries
is designed around a core scaffold. Traditionally, such core
scaffolds are chosen based on the following criteria: the core
scaffold should be of biological importance (privileged
structures), can be easily modified using readily available
building blocks, and the core structure scaffold should be
accessible whenever possible using straightforward synthetic
conditions. Each positional scanning sublibrary contains
positions that permit structural variations around the central
core. Screening data from a library provides extensive and
clear SAR information and enables identification of active
individual compounds. Thus, the individual structural com-

ponents, and their representative contributions to total
biological activity within the positional scanning library, are
revealed.

The use of quantitative measurements to distinguish
compounds within a library of compounds is a highly useful
and comprehensive approach.50–52 These measurements
involve molecular properties or descriptors.53,54 It has been
shown in many cases that a computational approach for the
calculation of the descriptors, and the selection of a subset
of the full library of compounds, can lead to a more enhanced
representation of the library than if one selects compounds
at random.55 While mixture-based libraries eliminate a
number of the limitations inherent with screening large
collections of individual compounds, many of the quantitative
aspects of chemoinformatics appeal to the methods developed
by our laboratory. Chemoinformatic approaches are poten-
tially an attractive means to enhance the information gener-
ated following the screening of our mixture-based libraries.

To assess the usefulness of combining chemoinformatic
applications with our mixture-based libraries, we have
conducted several pilot studies. One of the studies was based
on the screening of a trisubstituted bicyclic guanidine PS-
SCL against a κ-opioid receptor. Using positional scanning
deconvolution methods, the screening of this library led to
the selection of 48 individual compounds for synthesis. These
individual compounds had binding affinities ranging from
37 to >10 000 nM for the κ-opioid receptor.4 The data
obtained from this series of compounds is valuable in that
active compounds were identified and SAR information was
obtained from the range of activities. To enhance positional
scanning deconvolution methods and obtain qualitative SAR
data from our small-molecule libraries, we combined chemo-
informatics approaches to develop a combined computational
deconvolution method.

The trisubstitued bicyclic guanidine library (BCG) contains
102 459 individual compounds. To further reduce the number
of compounds to be studied, as well as incorporate some of
the information that was obtained from the original screening
of the library, a technique similar to peptide-based biometri-
cal analysis was applied. The peptide-based biometrical
analysis is a method that scores each peptide within a
sequence database using the data obtained from the screening
of peptide positional scanning libraries.9,56 Using the percent
inhibition data obtained from screening of the BCG library
in the κ-opioid receptor, a predicted relative activity score
is calculated for each of the 102 459 compounds in the
library. The predicted scores were calculated by addition of
the normalized percent inhibition of the sample for each of
the functionalities in the compound. Figure 8 represents the
relative score distribution for all 102 459 compounds in the
BCG library for the κ-opioid assay. In this example, the top
3% (2762 compounds with score g255) were selected as
potentially the most-active compounds. This set of 2762
compounds will be referred to as the metrical analysis (MA)
set. It should be noted that with sufficient computational
power and time all 102 459 compounds could and should
be studied. While 2762 compounds is significantly less than
the original 102 459 compounds making up the entire BCG
positional scanning library, the synthesis of even 2762

Figure 7. (a) Screening results from fixing one position of scaffold
1 in Psychogenics in vivo screening assay for psychiatric indica-
tions. As in Figure 6, the assay simultaneously screens for seven
different CNS indications, and the predictions are expressed in the
form of Bayesian posterior probabilities for each indication. In this
figure, each vertical bar represents the different mixtures screened.
The mixtures differ only by the substituent that was fixed at the
given position. The arrows indicate mixtures that differ solely on
the stereochemistry in the moiety at the defined position. (b)
Screening results for six individual compounds initially identified
from scaffold 1 in Psychogenics in vivo screening assay for
psychiatric indications. All of them were screened at a dose of 30
mg/kg in mice, n ) 10. See Figures 6 and 7a for more details.
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individual compounds is typically time-consuming and
economically prohibitive for most groups in secondary-
screening efforts.

To reduce the number of individual compounds to be
synthesized, a computational subsetting technique was
employed. A total of 199 molecular properties were calcu-
lated for the 2762 compounds in the MA set. However, 117
descriptors had no variance in the results. The 82 remaining
descriptors were used for the principal component analysis
(PCA).57 Following the PCA, the next step was to select a
diverse set of compounds from the original MA library of
2762. There are multiple options for selecting diverse
compounds from a library including distance-based methods,
cell-based methods,58 and coverage-based algorithms.59 For
this project, we used the distance-based algorithm, MaxMin,
as well as a novel coverage-based method, both available in
Accelrys’ Cerius2 package.

With the MaxMin function, nine subsets of differing sizes
were created, namely, 30, 40, 48, 50, 60, 70, 80, 90, and
100 compounds in each subset (subset 48 was included for
the 48 compounds identified through the use of positional
scanning deconvolution). To select a set of compounds for
synthesis from all the subsets, a weighted sum of percent
differences was calculated for each of the different subsets
(data not shown). The subset with 30 compounds had one
of the lowest weighted sum values, and this subset was
selected for synthesis and screening.

These 30 compounds were synthesized and then screened
in the κ-opioid receptor. The results identified a range of
activities similar to the activities found with the compounds
selected using the positional scanning deconvolution methods
in which the most active compound had a Ki value of 99
nM. It is important to note that in this type of study
stereoisomers are not distinguished from one another and
will occupy the same area of chemical space. The data
obtained from both deconvolution approaches are shown in
Figure 9A (positional scanning) and B (computational). There
were several stereoisomers in the positional scanning set 9A,
and these stereoisomers had differing activities. In some
cases, one stereoisomer had an activity greater than 500 nM
and the other less than 500 nM. A number of observations
can be made when viewing the two data sets, 9A and 9B,

together. First the compounds from the positional scanning
approach, 9A, represent a less diverse area of chemical space
than the compounds designed using the computational
approach, 9B. This result is completely consistent with what
was expected on the basis of how each set was devised.
Second there appears to be a significant correlation between
activity and spatial position. It appears that a compound that
is in the area between PC1 ) 0 and PC1 ) 10 and PC2 )
0 and PC2 ) 5 has a significantly greater chance of being
“active” than a compound residing in any area less than PC2
) 0.

To validate the observed correlation between activity and
spatial position and to demonstrate whether computational
deconvolution could lead to identification of additional leads,
as well as an enhanced SAR understanding, a set of 49
compounds were made, and the activities are shown in Table
6. Figure 10A graphically depicts the chemical space position
of these compounds. The compounds depicted by red circles
were synthesized to test the “positive predictive value” of
this deconvolution method, while the blue circle compounds
were chosen to test the “negative predictive value.” In other

Figure 8. Relative score distribution for the BCG library. The
predicted relative % inhibition score was calculated for each of
the 102 459 compounds in the library. This was calculated simply
by adding the score that each substituent in each compound received
from the screening of the positional scanning library in the κ-opioid
radioreceptor assay. Theoretically the higher the total score of the
individual compound in this distribution the more likely it will be
active when screened.

Figure 9. Comparison of the chemical space relationship for
positional scanning and computational deconvolution approaches.
Two principle components graphed on the x-y axis, respectively
(approximately 91% of the total variance is represented in these
components). Red circles represent compounds with Ki values lower
than 500nM, and blue circles represent compounds with Ki values
higher than 500nM. Figure 9A shows the data of the 48 compounds
made strictly using positional scanning deconvolution. This set
contains several stereoisomers. Figure 9B shows the data of the 30
compounds synthesized using the computational deconvolution
approach.
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words, if these two sets of compounds are screened against
the same κ-opioid receptor target as in the previous studies,
there would be a high probability that the red circle set would
have a larger percentage of active compounds than the blue
circle set. The results from the screening effort are presented
in Figure 10B. The data shows that for the negative predictive
value set, 11 out of the 12 compounds were inactive as
predicted. For the positive predictive value set, 5 out of the
37 compounds were active (Ki < 500 nM). Out of these five
active compounds, three had Ki values of less than 200 nM.
In addition, 11 out of the 37 positive predicted value set
showed Ki values of less than 1 µM.

In addition, it should also be noted that all of the
compounds represented in these sets that are deconvoluted
from the library appear to be relatively similar structurally.
Moreover, the distribution of similar compounds considered
here is quite different from that typically found in a diverse
compound collection (Figure 11). The curve located on the
left-hand side of the figure is the cumulative distribution
function (cdf) of the Tanimoto similarities,60 based on
MACCS fingerprints, as implemented in the MOE program
available from Chemical Computing Group (http://
www.chemcomp.com), of a random sample of 1000 com-
pounds obtained from the NIH AIDS antiviral screening

Table 6. κ-Opioid Receptor Binding (Ki) Data for Individual Bicyclic Guanidines Predicted Using Computational Deconvolution

no. R1 R2 R3 Ki (nM) prediction

47 S-methyl S-4-methoxybenzyl 3-cyclohexylpropyl 39 +
46 S-methyl R-4-ethoxybenzyl 1-adamantylethyl 151 +
15 S-methyl R-4-ethoxybenzyl 2-norbornylethyl 185 +
11 S-ethyl R-4-ethoxybenzyl 2-norbornylethyl 321 -
25 R-butyl R-4-methoxybenzyl 2-norbornylethyl 430 +
30 R-cyclohexylmethyl R-4-methoxybenzyl 1-adamantylethyl 457 +
9 S-ethyl R-4-methoxybenzyl 2-norbornylethyl 598 +
19 S-propyl S-4-methoxybenzyl 2-norbornylethyl 679 +
23 S-butyl S-4-methoxybenzyl 2-norbornylethyl 811 +
38 R-cyclohexylmethyl R-4-methoxybenzyl cyclopentylmethyl 819 +
5 R-isopropyl R-4-methoxybenzyl cyclopentylmethyl 913 -
17 S-propyl R-4-methoxybenzyl 2-norbornylethyl 921 +
37 R-cyclohexylmethyl R-4-methoxybenzyl cyclobutylmethyl 940 +
50 S-methyl R-4-methoxybenzyl 2-norbornylethyl 1033 +
34 S-cyclohexylmethyl R-butyl isobutyl 1173 -
14 S-ethyl S-4-methoxybenzyl 2-norbornylethyl 1368 +
45 S-isopropyl S-4-methoxybenzyl 2-norbornylethyl 1426 +
39 R-cyclohexylmethyl R-butyl isobutyl 1442 -
10 S-ethyl S-ethyl 1-adamantylethyl 1457 +
22 S-butyl S-4-methoxybenzyl cyclopentylmethyl 1643 +
12 S-ethyl S-4-methoxybenzyl phenylpropyl 1700 +
49 S-methyl S-4-methoxybenzyl 2-norbornylethyl 1730 +
42 S-isopropyl R-4-methoxybenzyl cyclopentylmethyl 1840 +
8 S-ethyl R-4-methoxybenzyl cyclopentylmethyl 1929 +
43 S-isopropyl R-4-methoxybenzyl 2-norbornylethyl 1933 +
28 S-cyclohexylmethyl R-4-methoxybenzyl 1-adamantylethyl 2373 +
21 S-butyl R-4-methoxybenzyl 2-norbornylethyl 2430 +
33 S-cyclohexylmethyl R-4-methoxybenzyl cyclopentylmethyl 3089 -
20 S-butyl R-4-methoxybenzyl cyclopentylmethyl 3539 +
48 S-methyl S-4-methoxybenzyl 4-methyl-cyclohexylmethyl 4216 +
32 S-cyclohexylmethyl R-4-methoxybenzyl cyclobutylmethyl 4442 +
24 R-butyl R-4-methoxybenzyl cyclopentylmethyl 4698 +
7 R-isopropyl S-4-methoxybenzyl cyclopentylmethyl 4981 -
26 R-butyl S-4-methoxybenzyl cyclopentylmethyl 5114 +
35 S-cyclohexylmethyl S-4-methoxybenzyl cyclobutylmethyl 5121 -
31 R-cyclohexylmethyl S-4-methoxybenzyl 1-adamantylethyl 5393 +
4 S-methyl S-isopropyl cyclohexylbutyl 5925 -
3 S-methyl S-isobutyl 1-adamantylethyl 6054 -
29 S-cyclohexylmethyl S-4-methoxybenzyl 1-adamantylethyl 6605 +
27 R-butyl S-4-methoxybenzyl 2-norbornylethyl 7949 +
36 S-cyclohexylmethyl S-4-methoxybenzyl cyclopentylmethyl 7988 -
40 R-cyclohexylmethyl S-4-methoxybenzyl cyclobutylmethyl 8683 +
44 S-isopropyl S-4-methoxybenzyl cyclopentylmethyl >10 000 -
41 R-cyclohexylmethyl S-4-methoxybenzyl cyclopentylmethyl >10 000 +
2 S-methyl S-isobutyl 3-cyclohexylpropyl >10 000 -
6 S-methyl R-isopropyl cyclohexylbutyl >10 000 +
1 S-methyl S-methyl 1-adamantylethyl >10 000 +
16 S-propyl R-4-methoxybenzyl cyclobutylmethyl >10 000 +
18 S-propyl S-4-methoxybenzyl cyclobutylmethyl >10 000 +
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database (http://dtp.nci.nih.gov/docs/aids/searches/active_
compounds.html). It is clear from the figure that the median
is at a value of approximately 0.2. Thus, the Tanimoto
similarities of half the compounds in the NIH collection are
less than 0.2, and half are greater than 0.2. From the shape
of the curve, it is also clear that the cdf is monomodal and
close to that of a normal distribution, another indication of
structural diversity.61 The curve located on the right-hand
side of the figure is the corresponding cdf for the set of 48
compounds considered in Figure 9A, which have a median
Tanimoto similarity of approximately 0.8. This value is quite
distant from that of the NIH data set and indicates that the
current data set is clustered relatiVe to it. This means that
even in a relatively dense area of chemical space we are
still able to distinguish between active and inactive areas.

There is another significant benefit derived when using
our type of mixture-based libraries, namely, they provide a
high-density of compounds in local regions of chemical
space. At first, this may not appear to be a very efficient
procedure because it runs counter to the current emphasis
on screening widely diverse sets of compounds, a strategy
that is quite acceptable under conditions where changes in
structure have a relatively small effect on activity. However,

in a growing number of cases, this is seen not to be true. In
such cases, small changes in structure can lead to precipitous
changes in activity giving rise to what have been called
“activity cliffs” 62 and the very well known differences that
single -position chirality variations cause in therapeutic
activity. Such differences in chirality have been readily
distinguishable in a variety of assays upon screening mixture-
based positional scanning libraries.4 If the density of
compounds screened in such regions of chemical space is
insufficient there is a significant likelihood that active
compounds would be missed.

Figure 12 depicts the approximate 3-D chemical space of
the set of the 48 compounds discussed above (Figure 9A).
The chemical space was constructed using Tanimoto similar-
ity based on MACCS key fingerprints, as noted earlier. The
similarity matrix was then subjected to principal component
analysis,57 and the first three principal components, which
explained 95% of the total variance of the sample, were
plotted in the figure. Since MACCS fingerprints do not
specifically account for stereochemical differences, stereo-
isomers in the figure are technically superimposed. In
addition, there are inherent limitations in MACCS finger-
prints for treatment of complicated multicyclic rings systems.
However, the points are “jittered” to separate them and,
hence, make them more visible. Active compounds (<500
nM) are red, and inactive compounds (>500 nM) blue. It is
clear from the data that a small change in chemical structure
or a change in stereochemistry can cause a significant change
in activity in this assay.

Because chemical space is highly dependent on the nature
of the representation used, the presence of activity cliffs may
be obscured or may not be observed at all if different
representations are employed, an unfortunate but unavoidable

Figure 10. Testing the hypothesis of activity chemical space
relationship. The 49 compounds are presented using the same
principle components as in Figure 9. The red circles are compounds
that were chosen to test the theoretically “active” area of chemical
space; the blue circles were compounds chosen to test the
theoretically “inactive” area of chemical space. Figure 10B shows
the actual results after screening. The red circles now represent
compounds with Ki values lower than 500 nM, and the blue circles
represent compounds with Ki values greater than 500 nM.

Figure 11. Distribution of a diverse set of compounds and a set of
compounds from positional scanning deconvolution. The curve
located on the left-hand-side of the figure is the cumulatiVe
distribution function (cdf) of the Tanimoto similarities, based on
MACCS fingerprints, of a random sample of 1000 compounds
obtained from the NIH HIV AIDS data set (http://dtp.nci.nih.gov/
docs/aids/searches/active_compounds.html). The curve located on
the right-hand side of the figure is the corresponding cdf for the
set of 48 compounds considered in Figure 9A. Also note that the
roughness of this curve in contrast to the first curve is caused by
the considerably smaller number of compounds in the latter set.
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feature of chemical space.62 Nevertheless, the concepts of
chemical space and activity cliffs are useful because they
can provide an intuitive, albeit imperfect, picture of the
complex structure–activity relationships (SARs) present in
the data set. This is the case here as exemplified by Figure
12, which shows numerous activity cliffs depicted as
overlapping red/blue circles or red and blue circles in close
proximity to each other. It is important to note that Figure
12 does not represent the true density of compounds
investigated in the study because only a relatively small
subset of compounds was characterized in detail (see above).
Moreover, it graphically shows that unless a reasonable high
density of compounds (and very importantly these should
include stereoisomers) are screened in regions of activity
cliffs there is a very significant likelihood that active
compounds will be missed.

Three significant findings resulted from our initial studies
aimed at combining computational approaches with the
screening of our mixture-based libraries. First, the positional
scanning deconvolution method developed by our group is
as effective for the identification of active compounds from
a large library of compounds as the computational decon-
volution methods described here illustrated. Second, the
combination of positional scanning deconvolution with
computational deconvolution described here leads to infor-
mation that is not available with positional scanning decon-
volution alone. This data can be used to specifically identify
groups of compounds within our current inventory of
libraries, or other outside sources of compounds, having a
high probability of similar activities to the most active
compounds identified, but with differing chemical properties.
And finally the studies confirm our belief that mixture based
libraries enable a highly effective means to screen dense,
localized regions of chemical space. Screening in dense
regions of chemical space decreases the possibility that active
compounds will be missed, a situation that is particularly
critical when activity cliffs are prevalent in activity land-

scapes. Moreover, such dense screening allows for a more
complete analysis of regions of chemical space, an analysis
that would be far less if the regions were “cherry picked”
for individual compounds.

Conclusions and Future Developments

The efforts of this laboratory over the past 16 years have
been focused on systematically modernizing what has been
known for the past 5000 years, namely, that compounds
having useful therapeutic value can be identified from
mixtures. Drug discovery has primarily been a process in
which the activity of plants, plant extracts, or other materials
were found to be active in humans. The systematic synthesis
and screening of individual compounds began 50–75 years
ago, and the concept of de novo drug design was conceived
and continues to be developed over the past 20 years. The
discovery of morphine for pain relief is a celebrated example.
It has been known for over 5000 years that the secretion of
opium poppies is a potent analgesic. Isolation of pure
morphine from the hundreds to thousands of compounds in
opium was accomplished only 200 years ago, it is structure
deciphered only 80 years ago, discovery of its target, the
µ-opiate receptor, was only accomplished in 1973, and
endorphins, the natural ligands for this receptor, were
identified in 1975. This is but one of a wealth of examples
of the mixture of compounds making up plant extracts being
used to identify palliatives or cures for many of mankind’s
physical and psychological afflictions.

A critical element of modern drug discovery has been
“target-based” screening. While of immense importance, it
is noteworthy that there remains a number of highly
successful therapeutics that do not have a clearly delineated
mechanism of action. We believe that the screening of
systematically arranged synthetic mixtures directly in relevant
in vivo assays will lead to the discovery of compounds that
would not have been identified in any other manner. With
this approach, it matters little what one’s expectations or
knowledge are prior to screening because it is the assay that
determines the outcome, a principle that has always been
and is likely to remain the mainstay of the drug discovery
process.

To conclude, mixture-based synthetic combinatorial librar-
ies that can be used directly in solution, as first presented
by this laboratory in 1991 and used by many others today,
allow for the rapid and economical identification of novel
leads. We continue to explore and develop these methods
and expand their utility; traditional positional scanning
approaches have now been combined with a new scaffold
ranking strategy, and computational analyses have been
applied to minimize the synthesis of individual compounds
associated with positional scanning deconvolution. These
strategies facilitate the direct use of mixture-based libraries
in animal models of disease. Along with the continuing
advances in synthetic methodologies such as volatilizable
solid- and solution-phase synthetic supports,82 we believe
that the tools that we have developed can be used directly
as stand-alone procedures or in conjunction with existing
drug discovery approaches. All benefit the drug discovery

Figure 12. 3-D chemical space of the set of the 48 compounds
synthesized using positional scanning deconvolution. The chemical
space was constructed using 2-D Tanimoto similarity based on
MACCS fingerprints. The similarity matrix was then subjected to
principal component analysis, and the first three principal compo-
nents, which explained 95% of the total variance of the sample,
were plotted in the figure.
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process and therefore accrue to the benefit of the health and
well being of mankind.
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